\(\int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx\) [184]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 26, antiderivative size = 26 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\text {Int}\left (\frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))},x\right ) \]

[Out]

Unintegrable(sin(d*x+c)/(f*x+e)^2/(a+a*sin(d*x+c)),x)

Rubi [N/A]

Not integrable

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx \]

[In]

Int[Sin[c + d*x]/((e + f*x)^2*(a + a*Sin[c + d*x])),x]

[Out]

Defer[Int][Sin[c + d*x]/((e + f*x)^2*(a + a*Sin[c + d*x])), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 7.68 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx \]

[In]

Integrate[Sin[c + d*x]/((e + f*x)^2*(a + a*Sin[c + d*x])),x]

[Out]

Integrate[Sin[c + d*x]/((e + f*x)^2*(a + a*Sin[c + d*x])), x]

Maple [N/A] (verified)

Not integrable

Time = 0.10 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00

\[\int \frac {\sin \left (d x +c \right )}{\left (f x +e \right )^{2} \left (a +a \sin \left (d x +c \right )\right )}d x\]

[In]

int(sin(d*x+c)/(f*x+e)^2/(a+a*sin(d*x+c)),x)

[Out]

int(sin(d*x+c)/(f*x+e)^2/(a+a*sin(d*x+c)),x)

Fricas [N/A]

Not integrable

Time = 0.27 (sec) , antiderivative size = 58, normalized size of antiderivative = 2.23 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\int { \frac {\sin \left (d x + c\right )}{{\left (f x + e\right )}^{2} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(d*x+c)/(f*x+e)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

integral(sin(d*x + c)/(a*f^2*x^2 + 2*a*e*f*x + a*e^2 + (a*f^2*x^2 + 2*a*e*f*x + a*e^2)*sin(d*x + c)), x)

Sympy [N/A]

Not integrable

Time = 4.20 (sec) , antiderivative size = 63, normalized size of antiderivative = 2.42 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\frac {\int \frac {\sin {\left (c + d x \right )}}{e^{2} \sin {\left (c + d x \right )} + e^{2} + 2 e f x \sin {\left (c + d x \right )} + 2 e f x + f^{2} x^{2} \sin {\left (c + d x \right )} + f^{2} x^{2}}\, dx}{a} \]

[In]

integrate(sin(d*x+c)/(f*x+e)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(sin(c + d*x)/(e**2*sin(c + d*x) + e**2 + 2*e*f*x*sin(c + d*x) + 2*e*f*x + f**2*x**2*sin(c + d*x) + f*
*2*x**2), x)/a

Maxima [N/A]

Not integrable

Time = 0.90 (sec) , antiderivative size = 522, normalized size of antiderivative = 20.08 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\int { \frac {\sin \left (d x + c\right )}{{\left (f x + e\right )}^{2} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(d*x+c)/(f*x+e)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-(d*f*x + (d*f*x + d*e)*cos(d*x + c)^2 + (d*f*x + d*e)*sin(d*x + c)^2 + d*e - 2*f*cos(d*x + c) - 4*(a*d*f^4*x^
2 + 2*a*d*e*f^3*x + a*d*e^2*f^2 + (a*d*f^4*x^2 + 2*a*d*e*f^3*x + a*d*e^2*f^2)*cos(d*x + c)^2 + (a*d*f^4*x^2 +
2*a*d*e*f^3*x + a*d*e^2*f^2)*sin(d*x + c)^2 + 2*(a*d*f^4*x^2 + 2*a*d*e*f^3*x + a*d*e^2*f^2)*sin(d*x + c))*inte
grate(cos(d*x + c)/(a*d*f^3*x^3 + 3*a*d*e*f^2*x^2 + 3*a*d*e^2*f*x + a*d*e^3 + (a*d*f^3*x^3 + 3*a*d*e*f^2*x^2 +
 3*a*d*e^2*f*x + a*d*e^3)*cos(d*x + c)^2 + (a*d*f^3*x^3 + 3*a*d*e*f^2*x^2 + 3*a*d*e^2*f*x + a*d*e^3)*sin(d*x +
 c)^2 + 2*(a*d*f^3*x^3 + 3*a*d*e*f^2*x^2 + 3*a*d*e^2*f*x + a*d*e^3)*sin(d*x + c)), x) + 2*(d*f*x + d*e)*sin(d*
x + c))/(a*d*f^3*x^2 + 2*a*d*e*f^2*x + a*d*e^2*f + (a*d*f^3*x^2 + 2*a*d*e*f^2*x + a*d*e^2*f)*cos(d*x + c)^2 +
(a*d*f^3*x^2 + 2*a*d*e*f^2*x + a*d*e^2*f)*sin(d*x + c)^2 + 2*(a*d*f^3*x^2 + 2*a*d*e*f^2*x + a*d*e^2*f)*sin(d*x
 + c))

Giac [N/A]

Not integrable

Time = 0.64 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\int { \frac {\sin \left (d x + c\right )}{{\left (f x + e\right )}^{2} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(d*x+c)/(f*x+e)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

integrate(sin(d*x + c)/((f*x + e)^2*(a*sin(d*x + c) + a)), x)

Mupad [N/A]

Not integrable

Time = 0.63 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08 \[ \int \frac {\sin (c+d x)}{(e+f x)^2 (a+a \sin (c+d x))} \, dx=\int \frac {\sin \left (c+d\,x\right )}{{\left (e+f\,x\right )}^2\,\left (a+a\,\sin \left (c+d\,x\right )\right )} \,d x \]

[In]

int(sin(c + d*x)/((e + f*x)^2*(a + a*sin(c + d*x))),x)

[Out]

int(sin(c + d*x)/((e + f*x)^2*(a + a*sin(c + d*x))), x)